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Abstract. The Hamiltonian and path integral formulations of the Dirac–Born–Infeld–Nambu–Goto D1-
brane action with and without a scalar dilation field are investigated under appropriate gauge-fixing.

1 Introduction

The Dirac–Born–Infeld–Nambu–Goto (DBING) action is
one of the most important actions in string theories [1–3].
In the present work we study the Hamiltonian and path
integral formulations [3,4] of this action describing the
D1-brane with and without a scalar dilation field ϕ under
appropriate gauge-fixing conditions (GFCs).

In the next section, the action is considered without
the dilation field and in Sect. 3, the action is studied in
the presence of a scalar dilation field ϕ. The Hamiltonian
and path integral quantizations are studied in both the
cases under appropriate canonical gauge-fixing in the ab-
sence of boundary conditions (BCs). Finally a summary
and discussion are presented in Sect. 4.

2 The action without a dilation field

We consider the (bosonic) DBING action describing the
propagation of a D1-brane (D-string) in a d-dimensional
flat background (with d = 10 for the fermionic and d = 26
for the bosonic D1-brane) defined by [1,2]

S1 =
∫

L1 d2σ, (1a)

L1 = (−T )[− det(Gαβ + Fαβ)]
1
2 (1b)

= (−T )[− det(Gαβ + Fαβ −Bαβ)]
1
2 (1c)

= (−T )[− det(∂αX
µ∂βX

νηµν + Fαβ −Bαβ)]
1
2 (1d)

= (−T ) (1e)

× [− det(∂αX
µ∂βXµ + (∂αAβ − ∂βAα) −Bαβ)]

1
2
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= (−T )[(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 − (Ȧ1 −A′
0)

2

= 2b(Ȧ1 −A′
0) − b2]

1
2 (1f)

+[−T ][(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 − (f − b)2]
1
2 (1g)

= [−TL] (1h)
Gαβ = ∂αX

µ∂βX
νηµν ; α, β = 0, 1, (1i)

ηµν = diag(−1,+1, ...+ 1);
µ, ν = 0, 1, 2, ..., (d− 1), (1j)

L2 = [(Ẋ ·X ′)2 − (Ẋ)2(X ′)2 − (f − b)2], (1k)
Fαβ = (Fαβ −Bαβ); Fαβ = (∂αAβ − ∂βAα), (1l)

Bαβ := ∂αX
µ∂βX

νBµν ; Bαβ =

(
0 b

−b 0

)
, (1m)

f = F01 = −F10 = (Ȧ1 −A′
0);

b = B01 = −B10, (1n)

Ẋµ ≡ ∂Xµ

∂τ
; X

′µ =
∂Xµ

∂σ
;

Ȧ1 ≡ ∂A1

∂τ
; A′

0 ≡ ∂A0

∂σ
. (1o)

In the present work we consider only the bosonic D1-brane
with d = 26 (however, for the corresponding
fermionic case one has d = 10). Here σα ≡ (τ, σ) are
the two parameters describing the world-sheet (WS). The
overdots and primes denote, in general, the derivatives
with respect to the WS coordinates τ and σ. The string
tension T is a constant of mass dimension two. Gαβ is the
induced metric on the WS, and Xµ(τ, σ) are the maps
of the WS into the d-dimensional Minkowski space and
describe the string’s evolution in space-time [1,2]. Here
Fαβ is the Maxwell field strength of the U(1) gauge field
Aα(τ, σ), and Bαβ(τ, σ) is a constant background anti-
symmetric NSNS 2-form gauge field. It is important to
mention here that the 2-form gauge field Bαβ is a scalar
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field in the target space, whereas it is an antisymmetric
tensor field in the WS-space. Also, we are considering the
2-form gauge field Bαβ as well as the U(1) gauge fields
Aα to be functions only of the WS coordinates τ and σ
and not of the target-space coordinates Xµ [1,2]. Further
the theory described by the action S1 is a gauge-invariant
(GI) (and consequently a gauge non-anomalous) theory
possessing the usual three local gauge symmetries given
by the two-dimensional WS reparametrization invariance
(WSRI) and the Weyl invariance (WI) [1,2].

The canonical momenta obtained from L1 are

Πµ :=
∂L1

∂(∂τXµ)

= [−T/L][(Ẋ ·X ′)X ′µ − (X ′)2Ẋµ], (2a)

π0 :=
∂L1

∂(∂τA0)
= 0, (2b)

E(≡ π1) :=
∂L1

∂(∂τA1)
= [T/L][f − b], (2c)

Πb :=
∂L1

∂(∂τ b)
= 0, (2d)

∂τ ≡ ∂/∂τ ; ∂σ ≡ ∂/∂σ, (2e)

where Πµ, π0, E(≡ π1) and Πb are the canonical mo-
menta conjugate respectively toXµ, A0, A1 and b(= B01 =
−B10). The theory described by S1 is thus seen to possess
four primary constraints:

ψ1 = Πb ≈ 0, (3a)
ψ2 = π0 ≈ 0, (3b)
ψ3 = (Π ·X ′) ≈ 0, (3c)
ψ4 = [Π2 + (E2 + T 2)(X ′)2] ≈ 0. (3d)

Here the symbol ≈ denotes a weak equality (WE) in the
sense of Dirac [4], and it implies that the above constraints
hold as strong equalities only on the reduced hypersurface
of the constraints and not in the rest of the phase space
of the classical theory (and similarly one can consider it
as a weak operator equality (WOE) for the corresponding
quantum theory) [4]. The canonical Hamiltonian density
corresponding tot L1 is

Hc
1 =

[
Πµ(∂τXµ) + π0(∂τA0)

+ E(∂τA1) +Πb(∂τ b) − L1

]
(4a)

= [EA′
0 + Eb]. (4b)

After incorporating the primary constraints of the theory
in the canonical Hamiltonian density Hc

1 with the help of
Lagrange multiplier fields u1(τ, σ), u2(τ, σ), u3(τ, σ) and
u4(τ, σ), which we treat as dynamical, the total Hamilto-
nian density of the theory could be written

HT
1 = [Hc

1 + u1ψ1 + u2ψ2 + u3ψ3 + u4ψ4] (5a)

=
[
EA′

0 + Eb+ u1Πb + u2π
0 + u3(Π ·X ′)

+ u4[Π2 + (E2 + T 2)(X ′)2]
]
. (5b)

We denote the momenta conjugate to u1, u2, u3 and u4 by
pu1 , pu2 , pu3 and pu4 respectively. The Hamilton equations
of motion obtained from the total Hamiltonian

HT
1 =

∫
HT

1 dσ, (6)

e.g., for the closed strings with the periodic BCs, are

+∂τX
µ =

∂HT
1

∂Πµ
= [u3X

′µ + 2Πµu4], (7a)

−∂τΠ
µ =

∂HT
1

∂Xµ

= −∂σ[u3Π
µ + 2X ′µ(E2 + T 2)u4], (7b)

+∂τA0 =
∂HT

1

∂π0 = u2, (7c)

−∂τπ
0 =

∂HT
1

∂A0
= −E′, (7d)

+∂τA1 =
∂HT

1

∂E
= [A′

0 + b+ 2E(X ′)2u4], (7e)

−∂τE =
∂HT

1

∂A1
= 0, (7f)

+∂τ b =
∂HT

1

∂Πb
= u1, (7g)

−∂τΠb =
∂HT

1

∂b
= E, (7h)

+∂τu1 =
∂HT

1

∂pu1

= 0, (7i)

−∂τpu1 =
∂HT

1

∂u1
= Πb, (7j)

+∂τu2 =
∂HT

1

∂pu2

= 0, (7k)

−∂τpu2 =
∂HT

1

∂u2
= π0, (7l)

+∂τu3 =
∂HT

1

∂pu3

= 0, (7m)

−∂τpu3 =
∂HT

1

∂u3
= (Π ·X ′), (7n)

+∂τu4 =
∂HT

1

∂pu4

= 0, (7o)

−∂τpu4 =
∂HT

1

∂u
= [Π2 + (E2 + T 2)(X ′)2]. (7p)

These are the equations of motion of the theory that pre-
serve the constraints of the theory in the course of time.
Demanding that the primary constraint ψ1 be preserved
in the course of time one obtains a secondary constraint
(with the Poisson bracket (PB) being denoted by { , }P):

ψ̃5 = {ψ1,HT
1 }P = [−E] ≈ 0. (8)

The preservation of ψ2 for all times gives rise to another
secondary constraint:

ψ̃6 = {ψ2,HT}P = (E′) ≈ 0. (9)
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The preservation of ψ̃5 and ψ̃6 for all times does not give
rise to any further constraints and similarly the preser-
vation of ψ3 and ψ4 for all times also does not yield any
further constraints.

Further, the constraint ψ̃5 also implies the constraint
ψ̃6 and therefore it is enough to consider only one con-
straint, namely

ψ5 = E ≈ 0, (10)

in the rest of our work (instead of the two constraints
ψ̃5 and ψ̃6). In view of this, from now onwards, we will
consider only one secondary constraint, namely ψ5 (and
not ψ̃5 and ψ̃6), in our work. The theory is thus seen to
possess only five constraints: ψ1, ψ2, ψ3, ψ4 and ψ5. Also
the first-order Lagrangian density of the theory is

LIO
1 =

[
Πµ(∂τXµ) + π0(∂τA0) + E(∂τA1) +Πb(∂τ b)

+ pu1(∂τu1) + pu2(∂τu2)

+ pu3(∂τu3) + pu4(∂τu4) − HT
1

]
(11a)

= [Π2 + (E2 − T 2)(X ′)2]u4. (11b)

The matrix of the Poisson brackets of the constraints ψi is
seen to be a singular matrix implying that the set of con-
straints ψi is first-class [3–5] and that the theory described
by S1 is a gauge-invariant (GI) theory. It is rather well
known that the theory described by S1 indeed possesses
three local gauge symmetries given by the two-dimensional
WS reparameterization invariance (WSRI) and the Weyl
invariance (WI) [1,2].

To study the Hamiltonian and path integral formula-
tions of this GI theory under GFCs, we convert the set of
first-class constraints of the theory ψi into a set of second-
class constraints, by imposing, arbitrarily, some additional
constraints on the system, called the GFCs or the gauge
constraints. For this pupose, we could choose, for example,
the set of GFCs [3–5]

ψ6 = ζ1 = X2 ≈ 0, (12a)
ψ7 = ζ2 = Π ′ ≈ 0, (12b)
ψ8 = ζ3 = A1 ≈ 0, (12c)
ψ9 = ζ4 = A0 ≈ 0, (12d)
ψ10 = ζ5 = b ≈ 0. (12e)

Corresponding to this choice of GFCs, the total set of
constraints for the theory under which the quantization
of the theory could be studied becomes

ψ1 = Πb ≈ 0, (13a)
ψ2 = π0 ≈ 0, (13b)
ψ3 = (Π ·X ′) ≈ 0, (13c)
ψ4 = [Π2 + (E2 + T 2)(X ′)2] ≈ 0, (13d)
ψ5 = E ≈ 0, (13e)
ψ6 = ζ1 = X2 ≈ 0, (13f)
ψ7 = ζ2 = Π ′ ≈ 0, (13g)
ψ8 = ζ3 = A1 ≈ 0, (13h)

ψ9 = ζ4 = A0 ≈ 0, (13i)
ψ10 = ζ5 = b ≈ 0. (13j)

We now calculate the matrix Mαβ(:= {ψα, ψβ}p) of the
Poisson brackets of the constraints ψi. The non-vanishing
elements of the matrix Mαβ are obtained thus:

M1,10 = −M10,1 = [−1] δ (σ − σ′), (14a)
M29 = −M92 = [−1] δ (σ − σ′), (14b)
M36 = −M63 = [−2X ′] δ (σ − σ′), (14c)
M37 = −M73 = [−Π] δ′′ (σ − σ′), (14d)
M46 = −M64 = [−4Π] δ (σ − σ′), (14e)
M47 = −M74 = [−2X ′(E2 + T 2)] δ′′ (σ − σ′), (14f)
M48 = −M84 = [−2E(X ′)2] δ (σ − σ′), (14g)
M58 = −M85 = [−1] δ (σ − σ′), (14h)
M67 = −M76 = [−2X ′] δ′ (σ − σ′). (14i)

The matrix Mαβ is seen to be non-singular, implying that
the corresponding set of constraints ψi is a set of second-
class constraints [3–5]. The determinant of the matrix
Mαβ is given by

[‖ det(Mαβ)‖]
1
2 , = [4Mδ′′(σ − σ′)δ′(σ − σ′)δ4(σ − σ′)],

(15a)
M = [Π2 − (E2 + T 2)(X ′)2]. (15b)

The non-vanishing elements of the inverse of the matrix
Mαβ (i.e., the elements of the matrix (M−1)αβ) are

(M−1)1,10 = −(M−1)10,1 = δ (σ − σ′), (16a)

(M−1)29 = −(M−1)92 = δ (σ − σ′), (16b)
(M−1)33 = [(E2 + T 2)(X ′)2Π/(M2)]|σ − σ′|

× δ′(σ − σ′)δ (σ − σ′), (16c)
(M−1)34 = +(M−1)43

= [−(Π2 + (E2 + T 2)(X ′)2)X ′/(4M2)]
× |σ − σ′|δ′(σ − σ′) δ (σ − σ′), (16d)

(M−1)35 = +(M−1)53
= [(Π2 + (E2 + T 2)(X ′)2)E(X ′)2X ′/(2M2)]
× |σ − σ′|δ′(σ − σ′)δ (σ − σ′), (16e)

(M−1)36 = −(M−1)63
= [−(E2 + T 2)X ′/(2M)] δ (σ − σ′), (16f)

(M−1)37 = −(M−1)73
= [−Π/(2M)]|σ − σ′|, (16g)

(M−1)44 = [Π(X ′)2/(4M2)]|σ − σ′|
× δ′(σ − σ′)δ (σ − σ′), (16h)

(M−1)45 = +(M−1)54
= [−ΠE(X ′)2(X ′)2/(2M2)]
× |σ − σ′|δ′(σ − σ′)δ (σ − σ′), (16i)

(M−1)46 = −(M−1)64
= [Π/(4M)]δ (σ − σ′), (16j)

(M−1)47 = −(M−1)74 = [−(X ′)/(4M)]|σ − σ′|, (16k)
(M−1)55 = [ΠE2(X ′)2)(X ′)2(X ′)2/(M2)]|σ − σ′|
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× δ′(σ − σ′)δ (σ − σ′), (16l)
(M−1)56 = −(M−1)65

= [−ΠE(X ′)2/(2M)] δ (σ − σ′), (16m)
(M−1)57 = −(M−1)75

= [E(X ′)2(X
′
)/(2M)]|σ − σ′|, (16n)

(M−1)58 = −(M−1)85
= δ (σ − σ′), (16o)

with the step functions ε(σ − σ′) defined by

ε(σ − σ′) :=

{
+1, (σ − σ′) > 0,
−1, (σ − σ′) < 0,

(17)

and∫
M(σ, σ′′)M−1(σ′′, σ′)dσ′′ = 110×10δ(σ − σ′). (18)

Now following the standard Dirac quantization procedure
in the Hamiltonian formulation [4], the non-vanishing
equal WS time (EWST) Dirac brackets (DBs) (denoted
by { , }D) of the theory described by the action S1 un-
der the GFCs ζi are obtained (with the arguments of the
variables being suppressed) as [3–5]

{Xµ, Xν}D

= [1/(2M2)]
[
(E2 + T 2)(X ′)2(ΠX ′µX ′

ν)

− X ′X ′µΠν −X ′ΠµX ′
ν

+ 2Π(X ′)2ΠµΠν −Π2(X ′)(X ′µΠν +ΠµX ′
ν)
]
|σ − σ′|

+ [1/(2M)]
[
2X ′ΠµXν

− Π(X ′µXν +XµX ′
ν)
]
ε(σ − σ′), (19a)

{Πµ, Πν}D

= [[1/M2]
[
(E2 + T 2)[Π2 + (E2 + T 2)(X ′)2](X ′)

× (ΠµX ′
ν +X ′µΠν)

− Π(E2 + T 2)(X ′)2(ΠµΠν + 2X ′µX ′
ν)
]
δ(σ − σ′)

+ [1/M ]
[
Π(E2 + T 2)

× (X ′µXν +XµX ′
ν −ΠµXν −XµΠν)

]
δ′(σ − σ′)

+ [1/(2M)]
[
Π(ΠµΠ ′

ν +Π ′µΠν)

− Π(E2 + T 2)(X ′µΠ ′
ν +Π ′µX ′

ν)
]
ε(σ − σ′), (19b)

{Xµ, Πν}D = [−δµ
ν ]δ(σ − σ′), (19c)

{A1, A1}D = [2/M2][E2(X ′)2(X ′)2(X ′)2Π]|σ − σ′|,
(19d)

{A1, X
µ}D

= [[1/(2M2)]
[
2EΠ(X ′)2(X ′)2Πµ

− [Π2 + (E2 + T 2)(X ′)2](X ′)X ′µε(σ − σ′)
]

− [1/(2M)][EX ′2(X ′)Xµ]ε(σ − σ′). (19e)

It is important to recall here that the constraints of the
theory represent only the weak equalities in the sense of
Dirac [4], as explained in the foregoing, implying that they
are strongly zero only on the reduced hypersurface of the
constraints and not in the rest of the phase space of the
(classical) theory (with a similar weak operator equality
holding for the corresponding quantum theory) and as a
consequence of this the DBs involving the gauge fields like
Aα (or Bαβ) can indeed be non-vanishing in principle (as
is evident in the present case from the above results) which
would, however, become strongly zero on the reduced hy-
persurface of the constraints of the theory described by
the action in any case.

Further, in the canonical quantization of the theory,
while going from equal WS time (EWST) Dirac brackets
of the theory to the corresponding EWST commutation
relations, one would encounter here the problem of opera-
tor ordering [6] because the product of canonical variables
of the theory are involved in the classical description of the
theory (like in the expressions for the constraints of the
theory) as well as in the calculation of the Dirac brackets.
These variables are envisaged as non-commuting opera-
tors in the quantized theory leading to the problem of
so-called operator ordering [6]. This problem could, how-
ever, be resolved [6] by demanding that all the string fields
and momenta of the theory are Hermitian operators and
that all the canonical commutation relations be consistent
with the hermiticity of these operators [6].

In the path integral formulation, the transition to quan-
tum theory is made by writing the vacuum to vacuum
transition amplitude for the theory called the generating
functional Z1[Ji] of the theory under GFCs ζi in the pres-
ence of the external sources Ji (following the Senjanovic
procedure [2,3] for a theory possessing a set of second-
class constraints, appropriate for our theory described by
the action S1 considered under the GFCs ζi (12) [2,3]) as
follows:

Z1[Ji]

=
∫

[dµ] exp

[
i
∫

d2σ[JiΦ
i +Πµ(∂τXµ) + π0(∂τA0)

+ E(∂τA1) +Πb(∂τ b)
+ pu1(∂τu1) + pu2(∂τu2) + pu3(∂τu3)

+ pu4(∂τu4) − HT
1 ]

]
, (20)

where the phase-space variables of the theory are Φi ≡
(Xµ, A0, A1, b, u1, u2, u3, u4) with the corresponding
respective canonical conjugate momenta:Πi ≡ (Πµ, π

0, E,
Πb, pu1 , pu2 , pu3 , pu4). The functional measure [dµ] of the
generating functional Z1[Ji] under the GFCs ζi is obtained
using (11), (13), (15) and (20):

[dµ] = [4Mδ′′(σ − σ′)δ′(σ − σ′)δ3(σ − σ′)]
× [dXµ][dA0][dA1][[db][du1][du2][du3][du4]
× [dΠµ][dπ0][dE][dΠb][dpu1 ][dpu2 ][dpu3 ][dpu4 ]
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× δ[(Πb) ≈ 0] · δ[(π0) ≈ 0] · δ(Π ·X ′) ≈ 0] ·
× δ[[Π2 + (E2 + T 2)(X ′)2] ≈ 0]
× δ[(E) ≈ 0] · δ[(X2) ≈ 0]
× δ[(Π ′) ≈ 0]δ[(A1) ≈ 0]
× δ[(A0) ≈ 0] · δ[(b) ≈ 0]. (21)

The Hamiltonian and path integral quantization of the
theory described by the action S1 under the GFCs ζi is
now complete. In the next section we study this theory in
the presence of a scalar dilation field.

3 The action in the presence
of a scalar dilation field

The (bosonic) DBING action describing the propagation
of a D1-brane (D-string) in a d-dimensional flat back-
ground in the presence of a scalar dilation field ϕ is defined
by [1,2]

S2 =
∫

L2d2σ, (22a)

L2 = [e−ϕL1] (22b)
= [−TLe−ϕ]. (22c)

The canonical momenta obtained from L2 are

Πµ :=
∂L2

∂(∂τXµ)
(23a)

= [−T e−ϕ/L][(Ẋ ·X ′)X ′µ − (X ′)2Ẋµ],

π0 :=
∂L2

∂(∂τA0)
= 0, (23b)

E(≡ π1) :=
∂L2

∂(∂τA1)
= [T e−ϕ/L](f − b), (23c)

Πb :=
∂L2

∂(∂τ b)
= 0, (23d)

π :=
∂L2

∂(∂τϕ)
= 0. (23e)

Here π is the momentum canonically conjugate to the di-
lation field ϕ. The theory described by S2 is thus seen to
possess five primary constraints:

χ1 = π ≈ 0, (24a)
χ2 = Πb ≈ 0, (24b)
χ3 = π0 ≈ 0, (24c)
χ4 = (Π ·X ′) ≈ 0, (24d)
χ5 = [Π2 + (E2 + T 2e−2ϕ)(X ′)2] ≈ 0. (24e)

The canonical Hamiltonian density corresponding to L2
is

Hc
2 =

[
Πµ(∂τXµ) + π0(∂τA0) + E(∂τA1)

+ Πb(∂τ b) + π(∂τϕ) − L2

]
(25a)

= [E(A′
0 + b)]. (25b)

After incorporating the primary constraints of the the-
ory in the canonical Hamiltonian density of the theory
Hc

2 with the help of Lagrange multiplier fields v1(τ, σ),
v2(τ, σ), v3(τ, σ), v4(τ, σ) and v5(τ, σ), which we treat as
dynamical, the total Hamiltonian density of the theory
could be written

HT
2

= [Hc
2 + v1χ1 + v2χ2 + v3χ3 + v4χ4 + v5χ5] (26a)

= [E(A′
0 + b) + v1π + v2Πb + v3π

0 + v4(Π ·X ′)
+ v5[Π2 + (E2 + T 2e−2ϕ)(X ′)2]]. (26b)

We denote the momenta conjugate to v1, v2, v3, v4 and
v5 by pv1 , pv2 , pv3 , pv4 and pv5 respectively. The Hamilton
equation of motion obtained from the total Hamiltonian:

HT
2 =

∫
HT

2 dσ, (27)

e.g. for the closed strings with periodic BCs, are

+∂τX
µ =

∂HT
2

∂Πµ
= [v4X ′µ + 2Πµv5], (28a)

−∂τΠ
µ =

∂HT
2

∂Xµ
= −∂σ[v4Πµ + 2X ′µ(E2 + T 2e−2ϕ)v5],

(28b)

+∂τA0 =
∂HT

2

∂π0 = v3, (28c)

−∂τπ
0 =

∂HT
2

∂A0
= [−E′], (28d)

+∂τA1 =
∂HT

2

∂E
= [A′

0 + b+ 2E(X ′)2v5], (28e)

−∂τE =
∂HT

2

∂A1
= 0, (28f)

+∂τ b =
∂HT

2

∂Πb
= v2, (28g)

−∂τΠb =
∂HT

2

∂b
= E, (28h)

+∂τϕ =
∂HT

2

∂π
= v1, (28i)

−∂τπ =
∂HT

2

∂ϕ
= [−2T 2e−2ϕ(X ′)2v5], (28j)

+∂τv1 =
∂HT

2

∂pv1

= 0, (28k)

−∂τpv1 =
∂HT

2

∂v1
= π, (28l)

+∂τv2 =
∂HT

2

∂pv2

= 0, (28m)

−∂τpv2 =
∂HT

2

∂v2
= Πb, (28n)

+∂τv3 =
∂HT

2

∂pv3

= 0, (28o)

−∂τpv3 =
∂HT

2

∂v3
= π0, (28p)
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+∂τv4 =
∂HT

2

∂pv4

= 0, (28q)

−∂τpv4 =
∂HT

2

∂v4
= [Π ·X ′], (28r)

+∂τv5 =
∂HT

2

∂pv5

= 0, (28s)

−∂τpv5 =
∂HT

2

∂v5
= [Π2 + (E2 + T 2e−2ϕ)(X ′)2]. (28t)

These are the equations of motion of the theory that pre-
serve the constraints of the theory in the course of time.
Demanding that the primary constraint χ2 be preserved
in the course of time one obtains a secondary constraint
(with the Poisson bracket (PB) being denoted by { , }P):

χ̃6 = {χ2,HT
2 }P = [−E] ≈ 0. (29)

The presentation of χ3 for all times gives rise to another
secondary constraint:

χ̃7 = {χ3,HT
2 }p = (E′) ≈ 0. (30)

The preservation of χ̃6 and χ̃7 for all times does not give
rise to any further constraints and similarly the preser-
vation of χ1, χ4 and χ5 for all times does not yield any
further constraints.

Further the constraint χ̃6 also implies the constraint χ̃7
and therefore it is enough to consider only one constraint,
namely,

χ6 = E ≈ 0 (31)

in the rest of our work (instead of the two constraints
χ̃6 and χ̃7). In view of this, from now onwards we will
consider only one secondary constraint, namely χ6 (and
not χ̃6 and χ̃7) in our work. The theory is thus seen to
possess only six constraints: χ1, χ2, χ3, χ4, χ5 and χ6. Also
the first-order Lagrangian density of the theory is

LIO
2 =

[
Πµ(∂τXµ) + π0(∂τA0)

+ E(∂τA1) +Πb(∂τ b) + π(∂τϕ)
+ pv1(∂τv1) + pv2(∂τv2) + pv3(∂τv3) + pv4(∂τv4)

+ pv5(∂τv5) − HT
2

]
(32a)

= [Π2 + (E2 − T 2e−2ϕ)(X ′)2]v5. (32b)

The matrix of the Poisson brackets of the constraints χi is
seen to be a singular matrix, implying that the set of con-
straints χi is first-class [3–5] and that the theory described
by S2 is a gauge-invariant (GI) theory. It is rather well
known that the theory described by S2 indeed possesses
three local gauge symmetries given by the two-dimensional
WS reparametrization invariance (WSRI) and the Weyl
invariance (WI) [1,2].

To study the Hamiltonian and path integral formula-
tions of this GI theory under GFCs, we convert the set of
first-class constraints of the theory χi into a set of second-
class constraints, by imposing, arbitrarily, some additional
constraints on the system called the GFCs or the gauge

constraints. For this purpose, we could choose, for exam-
ple, the set of GFCs [3–5]

χ7 = ρ1 = X2 ≈ 0, (33a)
χ8 = ρ2 = Π ′ ≈ 0, (33b)
χ9 = ρ3 = A1 ≈ 0, (33c)
χ10 = ρ4 = A0 ≈ 0, (33d)
χ11 = ρ5 = b ≈ 0, (33e)
χ12 = ρ6 = ϕ ≈ 0. (33f)

Corresponding to this choice of GFCs, the total set of
constraints of the theory under which the quantization of
the theory could be studied becomes

χ1 = π ≈ 0, (34a)
χ2 = Πb ≈ 0, (34b)
χ3 = π0 ≈ 0, (34c)
χ4 = (Π ·X ′) ≈ 0, (34d)
χ5 = [Π2 + (E2 + T 2e−2ϕ(X ′)2] ≈ 0, (34e)
χ6 = E ≈ 0, (34f)
χ7 = ρ1 = X2 ≈ 0, (34g)
χ8 = ρ2 = Π ′ ≈ 0, (34h)
χ9 = ρ3 = A1 ≈ 0, (34i)
χ10 = ρ4 = A0 ≈ 0, (34j)
χ11 = ρ5 = b ≈ 0, (34k)
χ12 = ρ6 = ϕ ≈ 0. (34l)

We now calculate the matrix Rαβ(:= {χα, χβ}P) of the
Poisson brackets of the constraints χi. The non-vanishing
elements of the matrix Rαβ are obtained thus:

R15 = −R51 = [2T 2e−2ϕ(X ′)2] δ (σ − σ′), (35a)
R1,12 = −R12,1 = [−1] δ(σ − σ′), (35b)
R2,11 = −R11,2 = [−1] δ(σ − σ′), (35c)
R3,10 = −R10,3 = [−1] δ(σ − σ′), (35d)
R47 = −R74 = [−2X ′] δ(σ − σ′), (35e)
R48 = −R84 = [−Π] δ′′ (σ − σ′), (35f)
R57 = −R75 = [−4Π] δ(σ − σ′), (35g)
R58 = −R85 = [−2(X ′)(E2 + T 2e−2ϕ] δ′′ (σ − σ′),

(35h)
R59 = −R95 = [−2E(X ′)2] δ(σ − σ′), (35i)
R69 = −R96 = [−1] δ(σ − σ′), (35j)

R78 = +R87 = [−2X ′] δ
′
(σ − σ′). (35k)

The matrix Rαβ is seen to be non-singular, implying that
the corresponding set of constraints χi is a set of second-
class constraints [5]. The determinant of the matrix Rαβ

is given by

[‖ det(Rαβ)‖]
1
2 = [4Rδ′′(σ − σ′) δ5(σ − σ′)], (36a)

R = [Π2 − (E2 + T 2e−2ϕ)(X ′)2]. (36b)

The non-vanishing elements of the inverse of the matrix
Rαβ (i.e., the elements of the matrix (R−1)αβ) are

(R−1)1,12 = −(R−1)12,1 = δ (σ − σ′), (37a)
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(R−1)2,11 = −(R−1)11,2 = δ (σ − σ′), (37b)

(R−1)3,10 = −(R−1)10,3 = δ (σ − σ′), (37c)

(R−1)44 = [2Π(X ′)2(E2 + T 2e−2ϕ)/(2R2)]
× |σ − σ′| δ′(σ − σ′)δ (σ − σ′), (37d)

(R−1)45 = +(R−1)54
= [−(X ′)(Π2 + (E2 + T 2e−2ϕ)(X ′)2/(4R2)]
× |σ − σ′| δ′(σ − σ′)δ (σ − σ′), (37e)

(R−1)46 = +(R−1)64

=
[
E(X ′)(X ′)2

× (Π2 + (E2 + T 2e−2ϕ)(X ′)2/(2R2)
]

× |σ − σ′| δ(σ − σ′), (37f)
(R−1)47 = −(R−1)74 (37g)

= [(X ′)(E2 + T 2e−2ϕ)/(2R)]δ (σ − σ′),
(R−1)48 = −(R−1)84

= [−Π/(2R)]|σ − σ′|, (37h)
(R−1)4,12 = +(R−1)12,4

=
[

− (X ′)(X ′)2(T 2e−2ϕ)

× (Π2 + (E2 + T 2e−2ϕ)(X ′)2)/(2R2)
]

× |σ − σ′| δ′(σ − σ′)δ (σ − σ′), (37i)
(R−1)55 = [Π(X ′)2/(4R2)]|σ − σ′|

× δ′(σ − σ′)δ (σ − σ′), (37j)
(R−1)56 = +(R−1)65

= [−ΠE(X ′)2(X ′)2/(2R2)] | σ − σ′ |
× δ

′
(σ − σ′)δ (σ − σ′), (37k)

(R−1)57 = −(R−1)75
= [−Π/(4R)] δ (σ − σ′), (37l)

(R−1)58 = −(R−1)85
= [(X ′)/(4R)]|σ − σ′|, (37m)

(R−1)5,12 = +(R−1)12,5

= [Π(X ′)2(X ′)2(T 2e−2ϕ)/(2R2)]
× |σ − σ′| δ′(σ − σ′) δ (σ − σ′), (37n)

(R−1)66 = [2ΠE2(X ′)2(X ′)2(X ′)2/(2R2)]
× |σ − σ′| δ′(σ − σ′) δ (σ − σ′), (37o)

(R−1)67 = −(R−1)76
= [ΠE(X ′)2/(2R)] δ (σ − σ′), (37p)

(R−1)68 = −(R−1)86
= [−E(X ′)(X ′)2/(2R)]|σ − σ′|, (37q)

(R−1)69 = −(R−1)96 = δ (σ − σ′), (37r)
(R−1)6,12 = +(R−1)12,6

= [−2ΠE(X ′)2(X ′)2(X ′)2(T 2e−2ϕ)/(2R2)]
× |σ − σ′| δ′(σ − σ′) δ (σ − σ′), (37s)

(R−1)7,12 = −(R−1)12,7 (37t)

= [Π(X ′)2(T 2e−2ϕ)/(2R)] δ (σ − σ′),
(R−1)8,12 = −(R−1)12,8 (37u)

= [−(X ′)(X ′)2(T 2e−2ϕ)/(2R)]|σ − σ′|,
with∫

R(σ, σ′′)R−1(σ′′, σ′)dσ′′ = 112×12 δ(σ − σ′). (38)

Now, following the standard Dirac quantization proce-
dure in the Hamiltonian formulation [4], the non-vanishing
EWST Dirac brackets (denoted by { , }D) of the the-
ory in the presence of a scalar dilation field described by
the action S2 under the GFCs ρi are obtained (with the
arguments of the field variables being suppressed) (with
t := T e−ϕ) [3–5]:

{Xµ, Xν}D

= [1/(2M2)]

×
[
(E2 + t2)(X ′)2(ΠX ′µX ′

ν) −X ′X ′µΠν −X ′ΠµX ′
ν

+ 2Π(X ′)2ΠµΠν −Π2(X ′)(X ′µΠν +ΠµX ′
ν)
]
|σ − σ′|

+ [1/(2M)]
× [2X ′ΠµXν −Π(X ′µXν +XµX ′

ν)]ε(σ − σ′), (39a)
{Πµ, Πν}D

= [1/M2]
[
(E2 + t2)

× [Π2 + (E2 + t2)(X ′)2](X ′)(ΠµX ′
ν +X ′µΠν)

− Π(E2 + t2)(X ′)2(ΠµΠν + 2X ′µX ′
ν)
]
δ(σ − σ′)

+ [1/M ]
[
Π(E2 + t2)

(
X ′µXν +XµX ′

ν

− ΠµXν −XµΠν

)]
δ′(σ − σ′)

+ [1/(2M)]
[
Π(ΠµΠ ′

ν +Π ′µΠν)

− Π(E2 + t2)(X ′µΠ ′
ν +Π ′µX ′

ν)
]
ε(σ − σ′), (39b)

{Xµ, Πν}D = [−δµ
ν ]δ(σ − σ′), (39c)

{A1, A1}D = [2/M2][E2(X ′)2(X ′)2(X ′)2Π]|σ − σ′|,
(39d)

{A1, X
µ}D

= [1/(2M2)]
[
2EΠ(X ′)2(X ′)2Πµ

− [Π2 + (E2 + t2)(X ′)2](X ′)X ′µε(σ − σ′)
]

− [1/(2M)][EX ′2(X ′)Xµ]ε(σ − σ′), (39e)
{A1, Π

µ}D

=
[
[1/(M2)](E2 + t2)

× [Π2 + (E2 + t2)(X ′)2](X ′)(X ′)Πµ

− 2Π(E2 + t2)2(X ′)2(X ′)X ′µδ(σ − σ′)

+ [1/M ][(E2 + t2)Π(X ′)Xµ]δ′(σ − σ′)
]

(39f)

− [1/(2M)][(E2 + t2)(X ′)(X ′)Π ′µ]ε(σ − σ′),
{Xµ, π}D

=
[
[1/(2M)][2Π + (X ′)2][(t2(X ′)2Xµ]ε(σ − σ′)
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− [1/(2M2)][Π2t2(X ′)2(X ′)X ′µ]|σ − σ′|
]
, (39g)

{π,Πµ}D =
[
[1/(2M2)][ΠµX ′Π2t2(X ′)2]ε(σ − σ′)

+ [1/(2M)][(1 −X ′)X ′(Π ′µ)t2(X ′)2]|σ − σ′|
]
, (39h)

{π,A1}D = [1/M2][(X ′)2(X ′)2(X ′)2t2Π]|σ − σ′|. (39i)

As explained in the previous section, the non-vanishing
DBs involving the gauge field A1, in the above results,
would become strongly zero on the reduced hypersurface
of the constraints of the theory described by the action
S2 [1,2]. The problem of operator ordering occurring here
while making a transition from the EWST Dirac brackets
to the corresponding EWST commutation relations can
be resolved here as explained in Sect. 3, by demanding
that all the string fields and momenta of the theory are
Hermitian operators and that all the canonical commuta-
tion relations be consistent with the hermiticity of these
operators [6].

In the path integral formulation, the transition to
quantum theory is made again by writing the vacuum
to vacuum transition amplitude for the theory, called the
generating functional Z2[Ji] of the theory, following again
the Senjanovic procedure for a theory possessing a set of
second-class constraints [2,3], appropriate for our theory
described by the action S2 considered under the GFCs ρi,
in the presence of the external sources Ji as follows [2,3]:

Z2[Ji] =
∫

[dµ] exp

[
i
∫

d2σ
[
JiΦ

i +Πµ(∂τXµ)

+ π0(∂τA0) + E(∂τA1) +Πb(∂τ b)
+ π(∂τϕ) + pv1(∂τv1) + pv2(∂τv2) + pv3(∂τv3)

+ pv4(∂τv4) + pv5(∂τv5) − HT
2

]]
, (40)

where the phase-space variables of the theory are Φi ≡
(Xµ, A0, A1, b, ϕ, v1, v2, v3, v4, v5) with the corresponding
respective canonical conjugate momenta:Πi ≡ (Πµ, π

0, E,
Πb, π, pv1 , pv2 , pv3 , pv4 , pv5). The functional measure [dµ]
of the generating functional Z2[Ji] under the GFCs ρi is
obtained using (30), (32), (34) and (39):

[dµ] = [4Mδ′′(σ − σ′)δ′(σ − σ′)δ5(σ − σ′)]
× [dXµ][dA0][dA1][[db][dϕ]
× [dv1][dv2][dv3][dv4][dv5]
× [dΠµ][dπ0][dE][dΠb][dπ]
× [dpv1 ][dpv2 ][dpv3 ][dpv4 ][dpv5 ]
× δ[(π) ≈ 0] · δ[(Πb) ≈ 0]
× δ[(π0) ≈ 0] · δ(Π ·X ′) ≈ 0]
× δ[[Π2 + (E2 + T 2)(X ′)2] ≈ 0]
× δ[(E) ≈ 0] · δ[(X2) ≈ 0]
× δ[(Π ′) ≈ 0] · δ[(A1) ≈ 0] · δ[(b) ≈ 0]
× δ[(A0) ≈ 0] · δ[(ϕ) ≈ 0]. (41)

The Hamiltonian and path integral quantization of the
theory described by the action S2 under the GFCs ρi is
now complete.

4 Summary and discussion

In this work we have studied the Hamiltonian and path
integral quantization of the DBING action describing the
D1-brane action with and without a scalar dilaton field ϕ
under appropriate GFCs in the absence of BCs, using the
instant form of dynamics on the hyperplanes of the WS de-
fined by the hyperplanes WS-time = σ0 = τ = constant.
The problem of operator ordering occurring here while
making a transition from EWST Dirac brackets to the
corresponding EWST commutation relations can be re-
solved here as explained in Sect. 3, by demanding that all
the string fields and momenta of the theory are Hermitian
operators and that all the canonical commutation rela-
tions be consistent with the hermiticity of these operators
[6]. It is important to mention here that in our work we
have not imposed any boundary conditions for the open
and closed strings separately. There are two ways to take
these BCs into account.

(a) One way is to impose them directly in the usual way
for the open and closed strings separately in an ap-
propriate manner [1,2];

(b) an alternative second way [7] is to treat these BCs as
the Dirac primary constraints [7] and study the theory
accordingly [7].

At present our related work is underway and will be
reported later.
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Prof. W. Rühl, Prof. J. Kupsch, Prof. S. Ketov, Prof. Martin
Reuter, Prof. Luca Lusanna, Prof. Stan. Brodsky, Prof. John
Hiller and Prof. Andreas Wipf from whom they have learnt
enormously and have received immense motivations and sev-
eral crucial clarifications.

References

1. D. Luest, S. Theisen, Lectures in String Theory, Lecture
Notes in Physics, 346 (Springer Verlag 1989); L. Brink,
M. Henneaux, Principles of string theory (Plenum Press
1988); C.V. Johnson, D-Brane Primer, hep-th/0007170; M.
Aganagic, J. Park, C. Popescu, J. Schwarz, Dual D-Brane
Actions, hep-th/9702133; M. Abou Zeid, C.M. Hull, In-
trinsic Geometry of D-Branes, hep-th/9704021

2. Usha Kulshreshtha, D.S. Kulshreshtha, Phys. Lett. B 555,
255 (2003); University of Kaiserslautern Preprints-2002

3. D.M. Gitman, I.V. Tyutin, Quantization of fields with con-
straints (Springer Verlag 1990); P. Senjanovic, Ann. Phys.
(N.Y.) 100, 227 (1976); Usha Kulshreshtha, D.S. Kul-
shreshtha, Int. J. Theor. Phys. 41, 1961 (2002); 41, 2411
(2002)

4. P.A.M. Dirac, Can. J. Math. 2, 129 (1950)



U. Kulshreshtha, D.S. Kulshreshtha: Hamiltonian and path integral formulations 461

5. See, e.g., Usha Kulshreshtha, Int. J. Theor. Phys. 41,
273 (2002); 41, 251 (2002); 40, 1769 (2001); 40, 1561
(2001); 40, 491 (2001); J. Math. Phys. 33, 633 (1992);
Helv. Phys. Acta 71, 353 (1998); Nucl. Phys. Proc. Suppl.
B 90, 133 (2000); Usha Kulshreshtha, D.S. Kulshreshtha,
H.J.W. Mueller-Kirsten, Phys. Rev. D 47, 4634 (1993);
Zeit. f. Phys. C 60, 427 (1993); 64, 169 (1994); Helv. Phys.
Acta 66, 737 (1993); 66, 752 (1993)

6. See, e.g., J. Maharana, Phys. Lett. B 128, 411 (1983)
7. C.S. Chu, P.M. Ho, Nucl. Phys. B 568, 447 (2000) [hep-

th/ 9906192]; M.M. Sheikh-Jabbari, A. Shirzad, Boundary
Conditions as Dirac Constraints, hep-th/9907055


